

## SHORT COMMUNICATIONS

*The Crystal Structure of Tetra-thiourea-palladium(II) Chloride,  $[Pd(SCN_2H_4)_4]Cl_2$* By Shun'ichiro OOI, Tsuyoshi KAWASE,  
Kazumi NAKATSU and Hisao KUROYA

(Received April 11, 1960)

It is well known that thiourea is capable of forming a number of coordination compounds with metallic ions. Recently, we reexamined the preparation methods of some of them, the

chemical analyses being carried out carefully, and obtained quite well-formed crystals of the palladium(II) complex salt,  $Pd(SCN_2H_4)_4Cl_2$ . We have therefore, attempted to investigate the crystal structure of this compound. There are only a few structural studies<sup>1-4)</sup> of the thiourea coordination compounds.

The crystal was prepared by the method of Kurnakow<sup>5)</sup>. The products are monoclinic, showing the predominant (100) face. The crystallographic data are:  $a=16.89$ ,  $b=11.18$ ,  $c=8.89 \text{ \AA}$ ,  $\beta=91.5$ ,  $Z=4$ ,  $\rho_{\text{obs}}=1.92$  and  $\rho_{\text{calc}}=1.91 \text{ g./cm}^3$ . Space group  $C2/c$  or  $Cc$  was given by the observation of the systematically absent reflections. However, the method of Howells

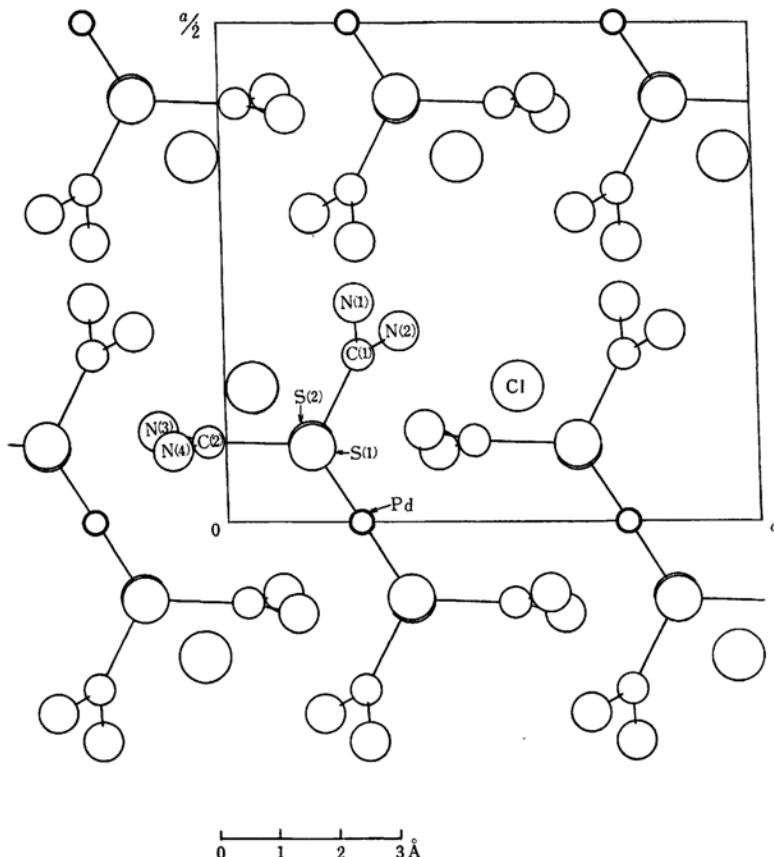

Fig. 1. Projection of the structure upon a plane normal to the  $b$ -axis.1) M. Nardelli, L. Cavalca and A. Braibanti, *Gazz. chim. ital.*, **86**, 1037 (1956).2) M. Nardelli, L. Cavalca and A. Braibanti, *ibid.*, **87**, 137 (1957).3) C. B. Knobler, Y. Okaya and R. Pepinsky, *Z. Krist.*, **111**, 385 (1959).4) M. Nardelli and G. Fava, *Acta Cryst.*, **12**, 727 (1959).5) Kurnakow, *J. prakt. Chem.*, [2] **50**, 496 (1894).

TABLE I. ATOMIC COORDINATES

|       | <i>x/a</i> | <i>y/b</i> | <i>z/c</i> |
|-------|------------|------------|------------|
| Pd    | 0          | 0.324      | 0.250      |
| S (1) | 0.073      | 0.482      | 0.158      |
| S (2) | 0.079      | 0.167      | 0.155      |
| Cl    | 0.135      | 0.182      | 0.050      |
| N (1) | 0.220      | 0.561      | 0.242      |
| N (2) | 0.189      | 0.380      | 0.328      |
| N (3) | 0.092      | 0.078      | -0.136     |
| N (4) | 0.071      | 0.288      | -0.105     |
| C (1) | 0.167      | 0.476      | 0.247      |
| C (2) | 0.081      | 0.183      | -0.037     |

et al.<sup>6)</sup>, applied to  $(hk0)$  reflections, was indicative of the presence of a center of symmetry, which was, in turn, favorite to  $C2/c$ . The structure analysis was carried out by using  $(h0l)$  and  $(hk0)$  data obtained from Weissenberg photographs which were taken with  $CuK\alpha$  radiation. From Patterson projections on  $(010)$  and  $(001)$ , the positions of palladium, chlorine and sulfur atoms could be deduced. A usual Fourier method was, then, applied to further analysis. Atomic coordinates listed in Table I gave the reliability index  $R=0.18$  and  $0.16$  for  $(h0l)$  and  $(hk0)$ , respectively.

In Fig. 1, the structure projected on  $(010)$  is shown. The crystal is essentially ionic and consisted of  $[Pd(SCN_2H_4)_4]^{2+}$  and  $Cl^-$ . A palladium atom is surrounded by four sulfur atoms in an approximately rectangular configuration with  $3.00$  and  $3.15\text{ \AA}$  for the lengths of shorter sides, and  $3.50\text{ \AA}$  for the longer ones. A complex ion has a two-fold rotation axis bisecting the two shorter sides and passing through the palladium atom. All S-C bonds projected on the plane formed with 4S's and Pd, are parallel to the shorter sides. Bond distances and angles found in a complex ion are:  $Pd-S=2.33$  and  $2.35\text{ \AA}$ ,  $\angle S-Pd-S=82^\circ$ ,  $85^\circ$  and  $97^\circ$ ,  $\angle Pd-S-C=106$  and  $107^\circ$ ,  $S-C=1.72$  and  $1.75\text{ \AA}$ ,  $C-N=1.32$ ,  $1.37$  and  $1.47\text{ \AA}$ ,  $\angle S-C-N=120$ ,  $121$ ,  $123$  and  $126^\circ$  and  $\angle N-C-N 117^\circ$ . No significant discrepancies could be found in the dimensions between the thiourea molecule reported by Kunchur and Truter<sup>7)</sup> on the thiourea crystal and the one in the present work. The bond angles formed at S's can be compared with those in  $Cu(SCN_2H_4)_3Cl^3)$  and in  $Pb(SCN_2H_4)_2Cl_2^4)$ .

*Institute of Polytechnics  
Osaka City University  
Osaka, Japan*

6) E. R. Howells, D. C. Phillips and D. Rogers, *Acta Cryst.*, **3**, 210 (1950).

7) N. R. Kunchur and M. Truter, *J. Chem. Soc.*, 1958, 2551.